
CISC 310
Exercise 2

GitHub Basics

At the end of today, you should be able to answer these questions confidently:

• What is a repository?
• Why is it (often) desirable for one project to be in multiple repositories simultaneously? What 

does it take to make this work? 
• What is “a commit”? Relatedly, what happens when you “commit” some code?
• What do “clone,” “push,” and “pull” mean? When should you do these things?

Before coming to class, you should have read “Getting your Project on GitHub” and Chapters 1 and 2 
of the Git book. 

Part I: Overview

The git website (http://git-scm.com/) says 

“Git is a free and open source distributed version control system”

Be sure you have some initial idea about what those 3 pieces mean!

Notice that the description of git says nothing about code! You don’t have to use git with code; you 
can use it with any kind of project you want to keep track of. We’ll mostly think about git in terms of
code, just because that’s what we’re dealing with in this class—though of course ‘code’ usually 
includes documentation files and other kinds of “extra” stuff you’d expect to see in a software project.

A lot of what git offers is about collaborative development with lots of people; in this class, you’re not
going to be collaborating on programming projects, so you won’t need many of git’s features. That’s 
a good thing: you’ll be able to get used to the basic git operations first, so when you need to use it to 
collaborate later, you’ll have a solid foundation. Remember, in this class, we’re using GitHub for 3 
essential reasons:

• I’m distributing all course information through GitHub—both the course website and, 
perhaps, repositories of code that we’ll need during class..

• I’m distributing your project assignments, in a way that will make it a bit easier for me to 
grade.

• It provides you a ‘backup’ of your project development, and also makes it easier for us to 
discuss your progress if questions come up..

We won’t, therefore, be using many of the most powerful ideas in git—you don’t need to worry about
branching and pull requests, for example. But I’m still going to ask you to go through some exercises 
that expose you to these ideas, so you can at least say you’ve seen them. 



Part 2: Basic Tutorials

First, git on the command line! You won’t need to use this very much, but it’s important to have some
fundamental understanding of what’s happening when we interact with git through Eclipse:

https://try.github.io

Then, basic work with GitHub: https://guides.github.com/activities/hello-world/ — this will show you,
briefly, how to create a repository on GitHub, and give you a little practice with the concepts of 
branches and pull requests (again, we won’t need these directly in this class, but if you ever want to 
contribute to open-source software project, these are essential).

Don’t remove any of your work from this tutorial; we’ll use it in…

Part 3: GitHub and Eclipse

This “tutorial” explains how to do various git/GitHub operations inside Eclipse:
http://eclipsesource.com/blogs/tutorials/egit-tutorial/

Use this tutorial to get the information you need to carry out the following sequence of operations 
(which closely resembles the usual sequence of operations you’ll need to carry out when you’re 
working on programming projects). By the way, you probably won’t need every section of this 
tutorial; below I’ve listed the table of contents with the bold section titles indicating the ones that are
important for us.

Create a simple Java project in Eclipse. Create a Java source file (go to File->New->Class, or look for 
the button that looks like a small green circle with a ‘C’ in the middle), and write a little bit of Java 
code (this can be something as simple as a “Hello, world” program. Make sure this compiles and runs.

1. In Eclipse, clone the repository you created on GitHub in the previous tutorial. 
2. Add your simple Java project to your newly cloned repository. (See the “Creating Local 

Repositories” section for instructions about adding a project to a repository.)
3. Be sure to commit the project to your repository.
4. Add a couple lines of code to your Java. Make sure the result still compiles and runs. Commit

these changes. (Watch to see if the ‘dirty’ mark disappears after you commit.)
5. Look at your repository on GitHub. Is your Java project there? It shouldn’t be—why not? Now

push your commits up to GitHub. Is your Java project there? Take a few minutes on GitHub 
to explore the (very brief) commit history of your project, and the ways GitHub makes this 
information available. 

6. Now, make some changes to your repository on GitHub. For example, add a little bit of text to 
the file README.md, or create a new file. Note how GitHub “saves” your change by asking you
to commit it.

7. Look at the contents of your repository in Eclipse (Hint: one way is to open the “Git 
Repositories” view: Window->Show View->Other… and look in the Git menu.) You shouldn’t be
surprised that the change you made on GitHub doesn’t appear here. 

8. Now pull the changes from GitHub into your local repository, and make sure the changes you
made do appear. Look at your local commit history; it should show the commits you made on 
GitHub too.



These are the essential operations you’ll need to work on projects in this course. But before we finish,
try one more thing—an example of what not to do.

a) Make a change on GitHub; commit it there.
b) Make a change in Eclipse, commit it there.
c) Now do a push or a pull (doesn’t matter which). It should fail… why?

You should get into the habit of doing a pull from the remote repository before you start working on a
project, just to make sure you have all the latest changes. It’s possible to merge the conflicts (read the 
sectiosn on “Merge” and “Resolving Conflicts,” if you like), but at least in this class, you shouldn’t 
have any need to deal with that, as long as you’re careful about maintaining synchronization 
between your GitHub and Eclipse repositories.

Tutorial Contents
Installing EGit in Eclipse
EGit Configuration
Creating Local Repositories
Commit
Adding Files
Reverting Changes
Cloning Repositories 
Creating Branches
Merge
Resolving Conflicts
Fetch and Pull
Push — see below
Synchronize
History View
Creating Patches
Repository View
Additional Information
Index
Reset Types

More Resources

If you want to play around some more, here is a long list of tutorial and guides: 
https://help.github.com/articles/good-resources-for-learning-git-and-github/. 


