
CISC 3120

Exercise 3

War and Peace

(Based on materials from Jason Hallstrom's CPSC 215: Software Development Foundations,
http://people.cs.clemson.edu/~jasonoh/courses/cpsc_215_fall_2012)

Overview

In this lab:

• you will be introduced to Java enum types and gain further experience with Java arrays,

• you will gain experience developing Java classes,

• you will gain experience using Java objects to implement an object-oriented application, and

• you will gain experience using implementation inheritance in Java.

Requirements

You are required to implement a Java program that plays 52 hands of the classic simple card game
War. In this two-player game, each player gets one deck of 52 playing cards. One turn of the game
proceeds as follows: the players randomly select a card from their decks (usually by shuffling the
deck before play begins) and turn it over. The player with the higher card showing wins the turn.
Here, “higher” means that the first card has a higher value, or, in the case of a tie in value, has a
higher suit alphabetically. (So “3 of Clubs” beats “2 of Clubs”, and “5 of Spades” beats “5 of any-suit”.)
The winner of the game is the player who wins the most turns. (If you’ve played War before, you
know that these rules are somewhat simplified.)

Your program must consist of three classes satisfying the following requirements:

• Card. This class will be used to model a single playing card. The class must define private
fields to represent a card’s value (e.g., 2, ... 10, Jack, Queen, King, Ace) and suit (e.g., club,
diamond, heart, spade). I strongly suggest you implement these using Java’s enum types—see
pp 671–673 in the book, or the brief tutorial at
https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html. You might also want to consult the
API documentation for Enum, which is the base class for all enum declarations. In particular,
look at the documentation for compareTo().

In addition to any public constructors that you decide to include, the class must define two
public methods: The first, toString(), will return a reasonably formatted String object
corresponding to the card’s value and suit (e.g., “Ace of Spades”). The second, winner(), will
accept a Card object as argument, and return a boolean value indicating whether the first
card (i.e., the target of the method call) is higher than the second card (i.e., the argument to
the method call).

• Deck. This class will be used to model a standard deck of playing cards. The class must define
private fields to represent 52 playing cards: 13 different values, 4 suits each. (Probably, you’ll
want to implement this as a simple array.) In addition to any public constructors that you

http://people.cs.clemson.edu/~jasonoh/courses/cpsc_215_fall_2012
https://docs.oracle.com/javase/8/docs/api/java/lang/Enum.html#compareTo-E-
https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html

decide to include, the class must define one public method: The draw() method will return a
random Card object from the deck. The card returned by the method will also be removed
from the deck. (That is, a card returned by the draw() method must never be returned by any
subsequent call to draw().)

• MainDriver. This class will provide the main() entry point to your Java application. It will
construct two Decks of Cards before entering the 52-hand loop. In each iteration of the loop,
you will draw one Card from each Deck, display the Cards drawn, and declare a winner for
that hand. Upon termination of the loop, you will display the total number of hands won by
each player and declare a winner for the game.

Hints

Be sure to explore ways Eclipse can help you—the little 'c' in a green circle is a useful button, near the
left edge of the menu.

Don't be afraid to declare “helper methods” in your classes (though be sure these are declared
private).

Your code will need to select a random card. Here is a hint: The java.util package includes a
variety of useful classes. Remember that the class Random is contained within his package; it
provides a public default constructor (i.e., a public constructor that accepts no arguments). Once
you’ve created a new instance of Random, you may invoke nextDouble() on the object to return a
random double. Similarly, you may invoke nextInt() to return a random int. There may be other
techniques available in the API, as well.

You can get skeleton code as an Eclipse project from

https://github.com/BC-CISC3120-F16/class11-code

https://github.com/BC-CISC3120-F16/class11-code

	Overview
	Requirements
	Hints

